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Finding a causal relationship

Instrumental variable analysis:

Natural experiment

“encouragement”

Example:

We have subjects with lung disease. Some subjects are randomly 
selected and encouraged to exercise. 

We record if the exercise is performed and compute the effect of 

exercise on outcome.

4
Rosenbaum, Paul R. “Identification of Causal Effects Using Instrumental Variables: Comment.” 
Journal of the American Statistical Association 91, no. 434 (1996): 465–68. 
https://doi.org/10.2307/2291633.



Finding a causal relationship

Mendelian randomization publications using UKBioBank:
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Finding a causal relationship

How to find if a higher BMI will cause a higher AF 
incidence?

6
AF, atrial fibrillation; BMI, body mass index.

Neeland, I. J. & Kozlitina, J. Mendelian Randomization. Circulation 135, 755–758 (2017).



Finding a causal relationship
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Genetic variants Exposure Outcome

Unobserved 
Confounders

Goal:
Finding casual effect of the exposure on the outcome.

We only have observational data, and a regression of outcome on 
exposure will be biased since unobserved confounders are 
unadjusted for.

In Mendelian randomization, we will use genetic variants as proxies 
for the exposure.

Z X Y



Mendelian randomization
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Genetic variants Exposure Outcome

Unobserved 
Confounders

Assumptions:
(i) The genetic variant is associated with the exposure.
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Genetic variants Exposure Outcome

Unobserved 
Confounders

Assumptions:
(i) The genetic variant is associated with the exposure.
(ii) The genetic variant cannot be associated with any 
confounder that lies within the exposure-outcome 
relationship. 

×



Mendelian randomization
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Genetic variants Exposure Outcome

Unobserved 
Confounders

Assumptions:
(i) The genetic variant is associated with the exposure.
(ii) The genetic variant cannot be associated with any 
confounder that lies within the exposure-outcome 
relationship. 
(iii) The genetic variant cannot be associated with the 
outcome through any pathway other than through the 
exposure in question.

(Usually, a fourth assumption of linearity or monotonicity is needed for identifiability)

×



Individual level data vs. summary statistics
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Genetic variants Exposure Outcome

Unobserved 
Confounders

Individual-level data:
Individual-level genetic variants Zi, exposure Xi, and outcome 

Yi are available.

Summary statistics:
Summary statistics of regressing exposure on genetic variants  

X ~ Z and regressing outcome on genetic variants Y ~ Z are available.

Z X Y



General guidelines

STROBE-MR Guidelines (BMJ 2021)

Guidelines for performing Mendelian randomization 
investigations (Wellcome Open Research 2020)

Mendelian randomization (Nature Reviews Methods 
Primers 2022)
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https://www.bmj.com/content/bmj/375/bmj.n2233.full.pdf
https://wellcomeopenresearch.org/articles/4-186/v2
https://rdcu.be/cGJHP
https://rdcu.be/cGJHP


Using the TwoSampleMR package 

Gibran Hemani, https://mrcieu.github.io/TwoSampleMR/articles/introduction.html
13

https://mrcieu.github.io/TwoSampleMR/articles/introduction.html


Using the TwoSampleMR package 

Gibran Hemani, https://mrcieu.github.io/TwoSampleMR/articles/introduction.html
14

https://mrcieu.github.io/TwoSampleMR/articles/introduction.html


Association between gene expression and 
phenotype through genotypes 

15
Figure 1 of Zhu, Zhihong, et al. "Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets." 
Nature genetics 48.5 (2016): 481-487.
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Alzheimer's disease

■ In 2019, the estimated total worldwide cost of 
dementia was US$ 1.3 trillion (WHO report)

■ is compiling a "Nominated Target List" as 
investigators nominate genes that are potentially 
good targets from human genomic, proteomic 
and/or metabolomic data

17



Multi-omics Mendelian randomization
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Multi-omics Mendelian randomization
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In the project, we aim to evaluate which is 
the better strategy:



Inverse variance-weighted average method

20
Figure from: Burgess, S., Foley, C. N. & Zuber, V. Inferring Causal Relationships Between Risk Factors and Outcomes from Genome-Wide 

Association Study Data. Annual Review of Genomics and Human Genetics 19, 303–327 (2018).



Generalized least squares method
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Summary data-based MR

Applicable when we have only one SNP as instrumental variable

22Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nature Genetics 48, 481–487 
(2016).



Generalized summary data-based MR
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Multivariable MR

24Rees, J. M. B., Wood, A. M. & Burgess, S. Extending the MR-Egger method for multivariable Mendelian randomization to correct for both 

measured and unmeasured pleiotropy. Statistics in Medicine 36, 4705–4718 (2017).
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Cauchy combination test:
Cauchy distribution

Harmonic mean p-value: 
Stable distribution (1,1)

Methods in p-value combinations

The p-values do not need to be independent 
in Cauchy combination test or HMP. 
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Methods in p-value combinations

Cauchy combination test:
Cauchy distribution

Harmonic mean p-value: 
Stable distribution (1,1)

Minimum p-value:
Uniform distribution

Fisher combination test:
(Fisher_chisq) chi-squared distribution

(Fisher_gamma) gamma distribution to 
approximate the null distribution can account for 
the correlation between p-values



28

Methods in p-value combinations

Cauchy combination test:
Cauchy distribution

Harmonic mean p-value: 
Stable distribution (1,1)

Minimum p-value:
Uniform distribution

Fisher combination test:
chi-squared distribution
gamma distribution



Fisher combination test: Fisher_gamma

Then we can use a Gamma distribution 
approximation in Yang et al. 2016 when 
the Fisher combination statistic is the 
sum of dependent chi-squared 
statistics: 

29



Mendelian randomization (MR) methods and 
combination methods

The methods we investigate in the simulation are marked by dots:
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Simulation settings: Horizontal vs. Vertical 
Pleiotropy

32
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Simulation settings: Horizontal vs. Vertical
Pleiotropy



Simulation settings

● (i) Pleiotropy: horizontal or vertical;

● (ii) Number of SNPs used as IVs: 5 or 20;

● (iii) Overlap between samples involved in the GWAS studies and the QTL 

studies: 0 (two-sample), 0.5 (half of the samples overlap) or 1 (one-sample);

● (iv) Use same samples or independent samples to calculate QTLs belonging to 

multiple omics biomarkers under a two-sample setting;
● (v) Outcome: continuous (YC) or binary (YB). When the outcome is binary, we 

also need to decide whether we will only use control samples to estimate the 
QTLs;

● (vi) LD between different SNPs r2: 0, 0.01 or 0.2;
● (vii) Strength of IV α, which is proportional to the association between IVs and 

exposures: 0.5, 1 or 2;
● (viii) Effect size of the pleiotropic association between exposure and outcome 

βX: 0 or 0.1.
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A comparison of the type I error across 
methods

The unshaded methods can control type I error for a large number of 
simulation settings
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Type I error when the QTL and the GWAS datasets 
are simulated with various degrees of overlap 

We can control type I error either when there is no overlap between samples 
(row of grid) or when outcome type is binary and only control samples are 
used to estimate QTLs (column of grid).

36



Type I error and power of selected combinations of 
MR methods and combination methods
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Methods that have the highest powers
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Prioritization of genes linked to Alzheimer’s disease using 
expression, proteomics, and metabolomics

biomarkers
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Prioritization of genes linked to Alzheimer’s disease using 
expression, proteomics, and metabolomics

biomarkers

GLS_Fisher can discover two significant genes ABCA7 and ATP1B1

41



Discussion

■ Prioritization of genes in a genome-wide analysis achieves an 
increase in power at the expense of deeper interrogations of 
relationship between biomarkers

■ Hard to differentiate causality from pleiotropy and linkage
■ Three-sample MR (Zhao et al. 2019) could be adopted in the 

future

42



Summary

■ We propose combination tests that aggregate p-values related to a gene 
after Mendelian randomization (MR) analyses probing the causal effect (or 
pleiotropic effect) of omics biomarkers on the outcome. 

■ Both in simulations and a real example, the combination tests are more 
powerful in gene prioritization than the multivariable MR framework. 

■ We recommend using Fisher combination test with gamma distribution 
approximation. Its power is the highest among the compared methods 
especially when only weak IVs can be selected from the variants.

43

Thank you!
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