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Finding a causal relationship

Instrumental variable analysis:
Natural experiment

“encouragement”

Example:

We have subjects with lung disease. Some subjects are randomly
selected and encouraged to exercise.

We record if the exercise is performed and compute the effect of
exercise on outcome.

Rosenbaum, Paul R. “Identification of Causal Effects Using Instrumental Variables: Comment.”
Journal of the American Statistical Association 91, no. 434 (1996): 465-68.
https://doi.org/10.2307/2291633.



Finding a causal relationship

Mendelian randomization publications using UKBioBank:
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& C @ ukbiobank.ac.uk/enable-your-research/publications?terms=causal&query=mendelian+randomization#articles

International Journal of Cancer, July 29th 2022 Search Publications:
The causal association between smoking, alcohol consumption and risk of bladder cancer: A univariable
and multivariable Mendelian randomization study ('

J Xiong et al

Reset filt
ESC Heart Failure, June 28th 2022 ese! ers

Causal associations between sleep traits and four cardiac diseases: a Mendelian randomization study (#
Y Yang et al

Frontiers in Nutrition, June 22"d 2022
Causal Relationship of Genetically Predicted Serum Micronutrients Levels With Sarcopenia: A Mendelian

Randomization Study (#

The Journal of Clinical Endocrinology and Metabolism, June 15th 2022

The Causal Effect of Systolic Blood Pressure Lowering on Vascular Outcomes in Diabetes: A Mendelian 20

TShaetal
Randomization Study
THouetal

Search Terms

BMC Psychiatry, June 15th 2022
Mendelian randomization study (#
ZWangetal



Finding a causal relationship

How to find if a higher BMI will cause a higher AF

incidence?

Randomized Controlled Trial

Random assignment into
treatment groups

v »

(== )L

Intervention
( BMI lower J ( BMI higher J
\J \J

( AF incidence lower J [ AF incidence higher)

AF, atrial fibrillation; BMI, body mass index.

Mendelian Randomization

Random allocation of
genetic variants

v

A4
Obesity-protecting Obesity-predisposing
genotype genotype

v v

(o ) Comer )

v A

[ AF incidence lower J (AF incidence higher]

Neeland, I. J. & Kozlitina, J. Mendelian Randomization. Circulation 135, 755-758 (2017).



Finding a causal relationship

Unobserved
Confounders

Genetic variants » Exposure »  Outcome

Z X Y

Goal:
Finding casual effect of the exposure on the outcome.

We only have observational data, and a regression of outcome on
exposure will be biased since unobserved confounders are
unadjusted for.

In Mendelian randomization, we will use genetic variants as proxies
for the exposure.



Mendelian randomization

Unobserved
Confounders

/ AN

Genetic variants » Exposure »  Outcome

Assumptions:
(i) The genetic variant is associated with the exposure.



Mendelian randomization

Unobserved

X/ Confounders

— 7 AN

Genetic variants » Exposure »  Outcome

Assumptions:

(ii) The genetic variant cannot be associated with any

confounder that lies within the exposure-outcome
relationship.



Mendelian randomization

Unobserved
Confounders

/ AN

Genetic variants » Exposure »  Outcome

—

Assumptions:

(i) The genetic variant is associated with the exposure.
(ii) The genetic variant cannot be associated with any
confounder that lies within the exposure-outcome
relationship.

(iii) The genetic variant cannot be associated with the
outcome through any pathway other than through the
exposure in question.

(Usually, a fourth assumption of linearity or monotonicity is needed for identifiability)
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Individual level data vs. summary statistics

Unobserved
/ Confounders \
Genetic variants » Exposure »  Outcome
Z X Y

Individual-level data:
Individual-level genetic variants Z;, exposure X;, and outcome

Y; are available.

Summary statistics:
Summary statistics of regressing exposure on genetic variants
X ~ Z and regressing outcome on genetic variants Y ~ Z are available.

11



General guidelines

STROBE-MR Guidelines (BMJ 2021)

Guidelines for performing Mendelian randomization
investigations (Wellcome Open Research 2020)

Mendelian randomization (Nature Reviews Methods
Primers 2022)
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https://www.bmj.com/content/bmj/375/bmj.n2233.full.pdf
https://wellcomeopenresearch.org/articles/4-186/v2
https://rdcu.be/cGJHP
https://rdcu.be/cGJHP

Using the TwoSampleMR package

Confounders
Objective: Infer the causal o SNP 1
effect of the exposure on \
the outcome
0 SNP 2 —— Exposure —> Outcome

o SNP 3

Exposure GWAS Define instruments: Obtain SNPs that
are GWAS significant for the exposure.
Ensure that they are independent.

1 Description

eee O

1 Instruments can be defined from a
e ., VarietyofdifferentSOUrCeS.

Get effects on outcome: Extract the
instrument SNPs from the outcome
GWAS. If they are not available, use
LD proxies instead.

Outcome GWAS .

MR Base contains a large database
of entire GWAS summary statistics.

Gibran Hemani, https://mrcieu.github.io/TwoSampleMR/articles/introduction.html

R commands
extract_instruments ()
read_exposure data ()
library (MRInstruments) ;
data(gwas_catalog) ;
data(aries_mgtl) ;
data(gtex_eqtl) ;
data (proteomic_gtls) ;
data (metab_gtls) ;

clump data ()

extract outcome data ()

read_outcome data()

13


https://mrcieu.github.io/TwoSampleMR/articles/introduction.html

Using the TwoSampleMR package

3.

Exposure GWAS Outcome GWAS
SNP Effect | Effect | Other | Effectallele | Effect | Effect | Other | Effect allele
allele allele | frequency allele | allele | frequency
O | rs123456 0132 |A G 0.28 0.022 | A G 0.26
O | rs234567 -0.485 | G T 0.41 0.056 | T G 0.61
0 | 5345678 0.203 | G C 0.11| -0.046 |G c 0.88
Harmonize effects
{s] GWAS Outcome GWAS
SNP Effect | Effect | Other | Effect allele | Effect Effect | Other | Effect allele
allele allele | frequency allele | allele | frequency
O | rs123456 0.132 | A G 0.28 0.022 | A G 0.26
O | 15234567 -0.485 | G T 0.41 -0.056 | G T 0.39
O | 15345678 0.203 | G C 0.11 0.046 | G C 0.12
I o

v

=

o

=

>
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c

o

-

3

=

)

Effect on exposure

Harmonize effects: Ensure that the
effect of the SNP on the exposure
and the effect of the SNP on the
outcome correspond to the same
allele.

Perform analysis: Using the
harmonized data, perform
Mendelian randomization
analyses and related sensitivity
analyses.

The slope of the regression line
corresponds to the causal effect
of the exposure on the outcome

Gibran Hemani, https://mrcieu.github.io/TwoSampleMR/articles/introduction.html

harmonise_data ()

mr ()

mr_singlesnp ()
mr_leaveoneout ()
mr_heterogeneity ()
mr_steiger ()

mr_pleiotropy test()
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https://mrcieu.github.io/TwoSampleMR/articles/introduction.html

Association between gene expression and

phenotype through genotypes

a b
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______ 5 \I
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Causal variant

Pleiotropy Phenotype
I

Causal variant
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—
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_______
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Figure 1 of Zhu, Zhihong, et al. "Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets."

Nature genetics 48.5 (2016): 481-487.
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Alzheimer's disease

B In 2019, the estimated total worldwide cost of
dementia was USS 1.3 trillion (WHO report)

M Azora is compiling a "Nominated Target List" as

investigators nominate genes that are potentially

good targets from human genomic, proteomic
and/or metabolomic data

17



Multi-omics Mendelian randomization

Goal: infer the causal effect
of exposures on the outcome
due to genetic variants

Genetic ~IA Expression
variants
Qﬁ Protein

_— Outcome

i * Metabolome

o

Unobserved confounder

R/
|

methylation
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Multi-omics Mendelian randomization

In the project, we aim to evaluate which is
the better strategy:

Multivariable Mendelian randomization

SNP1 ’T"\
P ~Exposure A

SN?D 2 Outcome
4

SNP 3

Combination test

SNP 1
? /‘O\
SN:P 2 ——Exposure A— Qutcome
SNP 3
Combine
SNP 1 p-values
A

y i

SN:P 2 ——Exposure B— Qutcome

SNP 3



Inverse variance-weighted average method

When the genetic variants are uncorrelated, the IVW estimate
of the causal effect size of the outcome on the exposure k is

—_
-
]
I
|

2 a2
] Z}; ,Bij,Bdeyj
= *2

where the standard error of the estimate is 105

5 1
se(bvw k) = —
s

heart disease risk (odds ratio)

Genetic association with coronary

1.0

0.00 0.05 0.10 0.15 0.20

Genetic association with
LDL cholesterol (mmol/L)

Figure from: Burgess, S., Foley, C. N. & Zuber, V. Inferring Causal Relationships Between Risk Factors and Outcomes from Genome-Wide 20

Association Study Data. Annual Review of Genomics and Human Genetics 19, 303-327 (2018).



Generalized least squares method

The generalized least squares method (GLS) builds upon IVW and
accounts for remaining LD within SNPs after LD clumping

= T = AT =
Ocrsk = By 'Bx) (B ' By),

it -
var (fcisk) = By Bx)

where the covariance matrix Q is constructed from the unsquared
LD matrix R

oY1 oY1

2 = (3-ﬁ3yjr,-j) = R ,

oYp_ ovp |

and rj's are the entries in the unsquared LD matrix R.



Summary data-based MR

Applicable when we have only one SNP as instrumental variable

Under the assumption that the GWAS z-value zy and QTL z-
value zx; are estimated using independent samples, we have an
approximate yx? test statistic with one degree of freedom

Tsmrk =

Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nature Genetics 48, 481-487
(2016).
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Generalized summary data-based MR

- - P T
=B = e . ST
Bxk1 Bxk2 Bxkp

_ By [var(Bxy) var(By) var(Buy)’
var (B) = = [ = )+ 7 L 7 1,
Xkj Xkj Yj Xkj

-~

R T/ Var(By)var(By) BBy
cov (i, b)) = J\/ " L ﬂYifiY)

BxkiBxxj BxxiBxxj

n,-\/var(kai)var(ﬁx;ej) ~ var(Bui)var(Bu)
Bxki ﬁij 3)2(“5)2@}- ’

Vi = (COV eki,é}j))pxp.

fosmrk = 1TV 11) 111V, 1,
var (acsm,k) = (1TV;11)—1,

29
Tesmrk = Ogomp i/ Var @GSMR,k) ;

23



Multivariable MR

m
Byj = Z OBxij +€, weights = 6}‘}-7 ,
k=1

BX“'

ﬂxzj
) ﬂxa;

Rees, J. M. B., Wood, A. M. & Burgess, S. Extending the MR-Egger method for multivariable Mendelian randomization to correct for both
measured and unmeasured pleiotropy. Statistics in Medicine 36, 4705-4718 (2017).
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Methods in p-value combinations

Cauchy combination test:
Cauchy distribution
Harmonic mean p-value:
Stable distribution (1,1)

TCauchy — Z Wk tan{(0'5 - pk)ﬂ-}
k=1

Z;cn=1 Wk
Z;cn=1 Wy, /P

Tump =

The p-values do not need to be independent
in Cauchy combination test or HMP.

26



Methods in p-value combinations

m
Cauchy combination test: TCauchy = z wy tan{ (0.5 — py )7}
Cauchy distribution k=1
Harmonic mean p-value: Tonp = D k1 Wk
Stable distribution (1,1) 1 Wk /Pk
Minimum p-value: Tvinp = min pg
ke{l..m}
Uniform distribution m
Fisher combination test: Trisher = —2 Z In(ps)
k=1

(Fisher_chisq) chi-squared distribution

(Fisher_gamma) gamma distribution to
approximate the null distribution can account for
the correlation between p-values



Methods in p-value combinations

m
Cauchy combination test: Tetmdin = E wy, tan{ (0.5 — pg )7}
Cauchy distribution k=1
. m
Harmonic mean p-value: Tonp = D k1 Wk
... . m
Stable distribution (1,1) he1 Wk /Pk
Minimum p-value: Tvinp = min pg
ke{l...m}
Uniform distribution m
Fisher combination test: Trisher = —2 E ln(pk)
chi-squared distribution k=1
gamma distribution — second p-value = 10 second p-value = 102 second p-value = 102
Sio= _
g _
&10 - - = f
-§10'Z- ToE iz
010.‘7 -
10 10 10°  10* 100 102 10°  10* 10+ 102 10°  10%
first p—value
—— Cauchy combination method = = harmonic mean p-value (HMP)
Combination method 28

Fisher combination method

Fisher combination method = = .02t between two z-values = 0.5



Fisher combination test: Fisher_gamma

e Plugging in and zy to the GLS estimator, we have . .
SEINE 1N ¥ xt & Then we can use a Gamma distribution

approximation in Yang et al. 2016 when

a\ ZATR‘IA 1A'I'R‘lz ,
GLsk = (Fxe Vx) (e 7 the Fisher combination statistic is the

~ aT p-1s 31 ,
var (fcis k) = PR Px) sum of dependent chi-squared
— Oc1s k statistics:
’ ,/var 9(;15,}2 m
(\ ) TFisher = —2 Z ln(pkz)
k=1

and

COV (ZGLS k1 » ZGLS k7 )

. . 2
:cov( Bk, R 'zy Bk, R 'zy )

Al . A B Y
VBxe R 1B, v B, R B,

T
) ( g‘(kl R_l ) R ( B\TX}QR_I )
Jﬁ(klR 1By, \/ﬁzsz 1Bxx,
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Mendelian randomization (MR) methods and
combination methods

The methods we investigate in the simulation are marked by dots:

Combination Method

p-value combination methods o MultivariableMR
@® A @@Q‘ 0 FisherGamma
& @ O A Cauchy
> & "
) . «5’ & v HMP
FR LS
SR SIRA AN
B MR Method
VW a v o
° VW
GLS RN TGS
3 e GSMR
e
g GSMR " - - o ® SMR_allSNPs
o SMR_singleSNP
= SMR singleSNP & ¥ o Methods with
inflated type | errors
MR methods not
SMR_allSNPs g accounting for LD

p-value combination
methods with poor null
distribution approximation
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Simulation settings: Horizontal vs. Vertical

Pleiotropy

Horizontal Pleiotropy

—% Exposure A
SNQP i P \
SNID 2 Exposure B — Outcome

SNVP 3 Exposure C

Vertical Pleiotropy
SNP 1 7 Exposure A
A
SN:P 2 Exposure B Outcome

SN'P 3 Exposure C /

Zj ~Binom(2,0.3) forj=1,..., p,

r,?j =0,0.01,0r 0.2 fori #j,

X1=2 iz,— + U+ ex,,

P

X2 =2X) —U+tex,

X3 = —0.5Xs + U +e€xs,

Yp ~ Binom(1, r), where logit(r) = -2 + BxX3 — U,
Yo =pBxX3 —U+ey,

U~N(@O,1), ex, ~N(@©O,1), ey ~N(0,1) independently.
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Simulation settings: Horizontal vs. Vertical

Pleiotropy

Horizontal Pleiotropy

—% Exposure A
SNQP i P \
SNID 2 Exposure B — Outcome

SNVP 3 Exposure C

Vertical Pleiotropy

SNP 1 7 Exposure A
A
SN:P 2 Exposure B Outcome

SN'P 3 Exposure C /

Zj ~Binom(2, 0.3)forj=1,..., P,
r;=0,0.01,0r 0.2 fori #},

}=1
alp/'ZJ
Xp=—= D" Z-U+ex,
p j—1
o P
xgzg > Zj—U+ex,

3
Yy ~ Binom(1, v), where logit(r) = —2 + Bx ZXk +U,
k=1

3
Yo =Bx D X+ Ui +ey,
k=1

U~N(@O,1), ex, ~N(O,1), ey ~N(0,1) independently.
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Simulation settings

(i) Pleiotropy: horizontal or vertical,

(ii) Number of SNPs used as IVs: 5 or 20;

(iii) Overlap between samples involved in the GWAS studies and the QTL
studies: 0 (two-sample), 0.5 (half of the samples overlap) or 1 (one-sample);
(iv) Use same samples or independent samples to calculate QTLs belonging to

multiple omics biomarkers under a two-sample setting;

(v) Outcome: continuous (Y¢) or binary (Yg). When the outcome is binary, we
also need to decide whether we will only use control samples to estimate the
QTLs;

(vi) LD between different SNPs r,: 0, 0.01 or 0.2;

(vii) Strength of IV «, which is proportional to the association between IVs and
exposures: 0.5, 1 0r 2;

(viii) Effect size of the pleiotropic association between exposure and outcome
Bx: 0 or 0.1.

34



A comparison of the type | error across
methods

The unshaded methods can control type | error for a large number of
simulation settings

06 r2 between SNPs

el

0 0.01 01

0.4 1

Combination Method
MultivariableMR

Fisher_gamma

SANS G YIMm uoe|nuis

ATHIHIHIHT

Cauchy
HMP

Fisher_chisq
MinP

Type | error

<

R Method

VW

GLS
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SMR_allSNPs
SMR_singleSNP
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I y

0.0 1
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I I
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&
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) MR methods not
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LR p-value combination
& methods with poor null
S distribution approximation




Type l error when the QTL and the GWAS datasets
are simulated with various degrees of overlap

We can control type | error either when there is no overlap between samples
(row of grid) or when outcome type is binary and only control samples are
used to estimate QTLs (column of grid).

Outcome type and samples used when calculating QTLs

Case-control (QTLs: all) Case—control (QTLs: control) Continuous
0.6 1
04 S
R Number of SNPs
o -\
= EJ5
)
2 B
S 064 2
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82 18 v
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Type | error and power of selected combinations of
MR methods and combination methods

Horizontal Pleiotropy

SNP 1 —% Exposure A
A

SNP 2
A

SNP 3 Exposure C /

Vertical Pleiotropy
7 Exposure A
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Methods that have the highest powers

Horizontal Pleiotropy
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Prioritization of genes linked to Alzheimer’s disease using
expression, proteomics, and metabolomics
biomarkers

(iv) Select a list of 584 genes with some evidence of association
to Alzheimer's disease from Agora genes at https://agora.
adknowledgeportal.org/genes.

(v) Within the Agora genes, select 41 genes where all three omics
bilomarkers (expression, proteomics and metabolomics) are
present.

(vi) Select 27 genes that at least one of eQTL, pQTL and metQTL
is significant (P-value < %%)

(vi1) For each gene, select cis-SNPs (distance between gene and
SNP less than 100 kb) and perform LD clumping in each
omics biomarker (select SNP with the smallest QTL when
possible, r? < 0.2, distance > 100 kb).

(viii) Perform MR analysis for each omics biomarker using the
exposure datasets and the outcome datasets.

(ix) Integrate P-values using combination tests.



Prioritization of genes linked to Alzheimer’s disease using
expression, proteomics, and metabolomics
biomarkers

GLS_Fisher can discover two significant genes ABCA7 and ATP1B1
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Discussion

B Prioritization of genes in a genome-wide analysis achieves an
increase in power at the expense of deeper interrogations of
relationship between biomarkers

B Hard to differentiate causality from pleiotropy and linkage

B Three-sample MR (Zhao et al. 2019) could be adopted in the
future
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summary

B We propose combination tests that aggregate p-values related to a gene
after Mendelian randomization (MR) analyses probing the causal effect (or
pleiotropic effect) of omics biomarkers on the outcome.

B Bothinsimulations and a real example, the combination tests are more
powerful in gene prioritization than the multivariable MR framework.

B We recommend using Fisher combination test with gamma distribution
approximation. Its power is the highest among the compared methods
especially when only weak IVs can be selected from the variants.

Thank you!
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