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Today’s talk: 2 parts
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q Part 1: Epidemic forecasting: an introduction

q Part 2: AI-based methodologies for epidemic forecasting
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Part 1: Epidemic forecasting: an 
introduction



Seasonal Flu

Epidemics 
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Disease Spread Dynamics 
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q When and where it started
q The scope and  pervasiveness
q The duration of spread
q Overall severity



An Example – 2014-2016 West Africa Ebola 
Epidemic 
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Source: https://en.wikipedia.org/wiki/Western_African_Ebola_virus_epidemic



Affecting Factors

q Human factors and demographics
q mobility, daily activities, mixing patterns
q age, gender, social status, economic status

q Environmental factors
q sanitation facilities, water supply, food, and climate

q Public health interventions
q pharmaceutical (prophylactics, antivirals, vaccines)
q non-pharmaceutical (stay-at-home orders, mask wearing, social 

distancing, safe burials)
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An Example – COVID 19 Pandemic
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Dec, 2019

May 5, 2023

Human mobility/activity Public health interventions

Demographics

Interplay
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Safety  

Pictures from Google Images



Epidemic Forecasting

q Use observed data sources as the reference data to make 
temporal and spatial predictions of an epidemiological 
target.
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TargetReference Data

MODELINPUT OUTPUT

Forecasting



Examples – Flu/COVID Forecasting
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Example-1
CDC FluSight Challenge

1-4 weeks ahead forecasts

Peak intensity and peak 
week forecasts

Example-2
CDC COVIDHub Challenge

Centers for Disease Control and Prevention (CDC)

1-4 weeks ahead forecasts

Global, national, state, and 
county levels forecasts



Reference Data
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q Surveillance data
q Stable and reliable
q Delayed, not at finer resolution

q Mobility data
q Modeled vs. real world collected

q Social media data
q Real time at finer resolution
q Not representative, large collection and curation efforts

q Other reference data 



Temporal Forecasting

q Real-time forecasting
q Retrospective forecasting
q Short-term forecasting
q Long-term forecasting
q Lead time or horizon

q at time point t, h is the horizon if predicting time point t + h
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Spatial Forecasting

q Flat-resolution forecasting
q High-resolution forecasting
q Coarse-resolution forecasting
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Nebraska, US

State level surveillance data is available County level surveillance data is NOT available

Influenza-like-illness (ILI)



Challenges of Epidemic Forecasting
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q With reference data
q Coarse spatial resolution, delayed; sparse, noisy, rapidly co-

evolving 
q With spatial and temporal forecasting

q Compute- and data-intensive
q Hard to capture long-term patterns with limited reference data
q Lack of spatiotemporal correlations



Evaluations

q Point estimation
q Popular metrics:

q (1) Mean Absolute Error (MAE), (2) Mean Squared Error (MSE), 
(3) Root Mean Squared Error (RMSE), (4) Mean Absolute 
Percentage Error (MAPE), (5) Pearson Correlation (PCORR).

q Probabilistic forecasting
q Popular metrics:

q (6) Logarithmic Score (logS), (7) Continuous Ranked Probability 
Score (CRPS), (8) Interval Score (IS), (9) Weighted Interval Score 
(WIS).
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Statistical time 
series methods 

Simplicity

AR, ARMA, 
ARIMA, etc.

Epidemic Forecasting Methods
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Deep learning 
methods

Non-linear learning power

FNN, RNN, CNN, 
GNN, etc.

Mechanistic 
methods

Causal prediction

SIR, SEIR, SIRD, 
SEIRD, etc.



Theory-based Mechanistic Methods
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Patch A

Patch B

Patch C

Patch D

Network

Example: Susceptible-Exposed-Infectious-Recovered (SEIR)

Single-patch/Network-based 
compartmental models

Agent-based models

Mechanistic 
methods

Causal prediction

SIR, SEIR, SIRD, 
SEIRD, etc.



Statistical time 
series methods 

Simplicity

AR, ARMA, 
ARIMA, etc.

Data-driven Statistical Methods
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Non-stationary 
time series

Plots from WHO COVID-19 Dashboard



Data-driven Deep Learning Methods
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Deep learning 
methods

Non-linear learning power

FNN, RNN, CNN, 
GNN, etc.

Feed Forward 
Neural Networks

(FNN)

Recurrent Neural 
Networks

(RNN)

Convolutional 
Neural Networks

(CNN)

Graph Neural 
Networks

(GNN)

Deep learning in 
epidemic forecasting

2017.05 2017.12

2018.06 2019.12

(Xu et al. PlosOne)
First FNNs for 
influenza 
forecasting

(Volkova et al. 
PlosOne)
First LSTMs for 
influenza forecasting

(Wu et al. SIGIR)
RNN and CNNs 
for influenza 
forecasting

(Deng et al. CIKM)
First GNNs for ILI 
forecasting 
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Part 2: AI-based methodologies for 
epidemic forecasting



Questions

q Can we apply recurrent neural networks to capture long-
term patterns in epidemic forecasting?

q How to leverage graph neural networks to learn spatial and 
temporal signals for spatiotemporal epidemic forecasting?

q How to leverage theory-based mechanistic models to 
provide epidemiological context for deep learning-based 
epidemic forecasting? 

q How to improve the robustness of forecasting systems?
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LSTM-based Epidemic Forecasting

q Challenge: capture long-term patterns
q Recurrent neural networks (RNNs), are a class of neural 

networks that allow previous outputs to be used as inputs 
while having hidden states.

q Popular applications of RNNs are machine translation, text 
classification, video classification, etc. 

q Make use of RNN for epidemic forecasting
q In 2018, the first LSTM-based model in seasonal influenza 

forecasting challenge (CDC FluSight)
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Epidemic Forecasting with RNN

27

𝐲!

𝐱!

𝐡!

𝐲"

𝐱"

𝐡"

𝐲#

𝐱#

𝐡#

𝐲$

𝐱$

𝐡$

𝐲%

𝐱%

𝐡%

wt+h

wt-4 wt-3 wt-2 wt-1 wt

𝐲

𝐱

RNN
Unfolding

Input

Hidden

Output
recurrent

The previous t weeks 
of ILI data points
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q In 2018, the first LSTM-based model in seasonal influenza 
forecasting challenge (CDC FluSight)
q Two-layer LSTM model
q MCDropout for probabilistic forecasting

LSTM-based Epidemic Forecasting
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Questions

q Can we apply recurrent neural networks to capture long-
term patterns in epidemic forecasting?

q How to leverage graph neural networks to learn spatial and 
temporal signals for spatiotemporal epidemic forecasting?

q How to leverage theory-based mechanistic models to 
provide epidemiological context for deep learning-based 
epidemic forecasting? 

q How to improve the robustness of forecasting systems?
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GNN-based Epidemic Forecasting

q Challenge: capture spatial and temporal signals
q Graph neural networks (GNNs), are a class of neural 

networks for processing data that can be represented as 
graphs, and provide an easy way to do node-level, edge-
level, and graph-level prediction tasks.

q Make use of GNN for epidemic forecasting
q In 2019, the first GNN-based model for seasonal influenza 

forecasting
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Problem Formulation
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region-1

region-2

region-3

region-4

region-5

region-6

region-7

region-8

Structure = 
Adjacency Matrix

𝐴! ∈ ℝ"×"

𝑎!"

Graph signals = 
Feature Matrix

𝑋! ∈ ℝ"×$

ℎ!

t

Geo-adjacency; Commute flow; 
Gravity network; Mobility flow; 
Learned attention matrix

t+h



Problem Formulation

q Node level predictions
q Dynamic adjacency matrix
q Dynamic node features
q Dynamic edge features
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t-2 t-1 t t+h



Spatiotemporal Correlations

q Geo-adjacency: static
q Commute flow: not real time
q Gravity network: model-based static data
q Mobility flow: real time but not public accessible
q Learned attention matrix: dynamic with computation cost
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Our methods: 
Graph Neural Network + Mobility Map
Graph Neural Network + Attention Mechanism



Mobility-GNN
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region-1 Node features
§ confirmed case count of past T days
§ death count of past T days
§ intra-region mobility flow of past T days

Edge features
§ Inter-region flow of active cases of past T days 
§ Inter-region mobility flow of past T days

region-2

region-3

region-4

region-5

region-6

region-7

region-8

Google COVID-19 Aggregated Mobility Research Data

t

L. Wang et al., “Using Mobility Data to Understand and Forecast COVID-19 Dynamics”, IJCAI 2021 workshop on AI4SG, 2021.

t+h

Network structure
§ Mobility flow

𝐴!



Mobility-GNN
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region-1 Node features
§ confirmed cases of past T days
§ death count of past T days
§ intra-region mobility flow of past T days

Edge features
§ Inter-region flow of active cases of past T days 
§ Inter-region mobility flow of past T days

region-2

region-3

region-4

region-5

region-6

region-7

region-8

Google COVID-19 Aggregated Mobility Research Data

t t+h

Network structure
§ Mobility flow

𝐴!

L. Wang et al., “Using Mobility Data to Understand and Forecast COVID-19 Dynamics”, IJCAI 2021 workshop on AI4SG, 2021.



Forecasting Performance
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Target
§ Point estimates
§ 53 US states COVID 19 daily new confirmed 

cases
Setting

§ Training-validation-testing: 100-25-28 days 
from March 1st to August 29th, 2020

Metrics
§ Root Mean Squared Error (RMSE)
§ Pearson Correlation (PCORR)

Variants
§ GNN-adj: geo-adjacency matrix
§ GNN-att: attention matrix
§ GNN-smob: static mobility map
§ GNN-dmob: dynamic mobility map Wang, et al., IJCAI AI4SG 2021



Cola-GNN

37

region-1 Node features
§ infectious case count of past T days

region-2

region-3

region-4

region-5

region-6

region-7

region-8

t

S. Deng et al., “Cola-GNN: Cross-location Attention based Graph Neural Networks for Long-term ILI Prediction.”, CIKM, 2020.

t+h

Edge features
§ None

Network structure
§ Geo-adjacency matrix + Attention matrix

𝐴!



Cola-GNN
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region-1 Node features
§ infectious cases of past T days

region-2

region-3

region-4

region-5

region-6

region-7

region-8

t t+h

Edge features
§ None

Network structure
§ Geo-adjacency matrix + Attention matrix
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S. Deng et al., “Cola-GNN: Cross-location Attention based Graph Neural Networks for Long-term ILI Prediction.”, CIKM, 2020.



Forecasting Performance
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Target
§ Point estimates
§ ILITotal in 47 Japan prefectures, 

10 US regions, 49 US states
Setting

§ Training-validation-testing: 50%-
20%-30%.

Metrics
§ Root Mean Squared Error (RMSE)
§ Pearson Correlation (PCORR)



Questions

q Can we apply recurrent neural networks to capture long-
term patterns in epidemic forecasting?

q How to leverage graph neural networks to learn spatial and 
temporal signals for spatiotemporal epidemic forecasting?

q How to leverage theory-based mechanistic models to 
provide epidemiological context for deep learning-based 
epidemic forecasting?

q How to improve the robustness of forecasting systems?
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Theory Guided DL for Epidemic Forecasting 

q Challenge: lack of epidemiological context
q Combining theory-based mechanistic models with deep 

learning models 
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Our methods: 
Deep Neural Network + Mechanistic Models



Theory Guided DL for Epidemic Forecasting 
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Deep neural 
networks

Epidemiological 
context+ TDEFSI1

CausalGNN2=

Theory-based 
mechanistic models

1L. Wang et al., “TDEFSI: Theory Guided Deep Epidemic Forecasting with Synthetic Information”, ACM Transactions on Spatial 
Algorithms and Systems, Deep Learning for Spatial Algorithms and Systems, 2020.
2L. Wang et al., “CausalGNN: Causal-based Graph Neural Networks for Epidemic Forecasting”, AAAI 2022.

Accurate and explainable 
predictions



TDEFSI Motivation
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High-resolution forecasts

Nebraska, US

State level surveillance data is 
available

County level surveillance data is 
NOT available

Flat-resolution forecasts

L. Wang et al., “TDEFSI: Theory Guided Deep Epidemic Forecasting with Synthetic Information”, ACM Transactions on Spatial 
Algorithms and Systems, Deep Learning for Spatial Algorithms and Systems, 2020.

Influenza-like-illness (ILI)



TDEFSI Framework
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TDEFSI = Agent-based SEIR + LSTM + Physical Constraints

Disease model parameter 
space learning

Synthetic training 
data generating

Two-branch LSTM model 
training and predicting

Sampling Space

Samples

Simulation

Deep Neural Networks

Synthetic data

L. Wang et al., “TDEFSI: Theory Guided Deep Epidemic Forecasting with Synthetic Information”, ACM Transactions on Spatial 
Algorithms and Systems, Deep Learning for Spatial Algorithms and Systems, 2020.
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TDEFSI – Agent-based Simulator

EpiFast*: An SEIR-based Epidemic Simulation
• Susceptible (S) -> exposed (E) -> infectious (I) -> recovered 

or removed (R)

Disease Model Parameter Space

• Parameter Space = (Incubation period, Infectious period, 
Transmissibility, Initial case number, Vaccine intervention)

P = (p%, p&, τ, N&, I')

* Keith R. Bisset, Jiangzhuo Chen, Xizhou Feng, V.S. Anil Kumar, and Madhav V. Marathe. 2009. EpiFast: a fast 
algorithm for large scale realistic epidemic simulations on distributed memory systems. ICS '09. ACM, New York, 
NY, USA, 430-439. Wang, et al., ACM TSAS 2020
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TDEFSI Framework

Collecting 
historical data

EpiFast
calibration

Distribution 
fitting (KS test)

Sampling from 
P

EpiFast
simulation

Generating 
synthetic data

Parameter 
space P

Historical curves Parameter samples

Simulation settingsSimulated curves

Synthetic high-resolution 
training data

Wang, et al., ACM TSAS 2020
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TDEFSI Framework

LSTM LSTM

Dense Dense

Merge

Dense

x1 x2

z

Two-branch LSTM-based modelBetween-season observations

Within-season observations Forecast at time t of 
the current flu season

Wang, et al., ACM TSAS 2020
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TDEFSI Forecasting Performance

State-level

County-level

Lower better Lower better Higher better

Wang, et al., ACM TSAS 2020
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TDEFSI Forecasting Performance 

Compared with other data-driven methods, 
TDEFSI performs better on NJ than on VA. Why?

Train

TDEFSI is trained with synthetic data which 
includes unseen trends in historical data!

(VA-blue) 
Similar 
seasons

Wang, et al., ACM TSAS 2020
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TDEFSI Interpretability 
What-if forecasting

TDEFSI performs better if trained with vac-based data than non-vac-based data. 
Wang, et al., ACM TSAS 2020



CausalGNN Problem Formulation
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Node features
§ Confirmed cases
§ Death count
§ Recovered count
§ Latitude and longitude
§ ……

t

Edge weight
§ Learned attention coefficients

region-1

region-2

region-3

region-4

region-5

region-6

region-7

region-8

Wang, et al., AAAI 2022



CausalGNN Framework
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Wang, et al., AAAI 2022



Experiments
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Target
§ Point estimates
§ COVID 19 daily new confirmed cases at national level, US state level and county 

level. 
Setting

§ Training-validation-testing: 80%-10%-10% from May 3rd, 2020 to Mar. 21st, 2021.
Metrics

§ Root Mean Squared Error (RMSE)
§ Mean Absolute Percentage Error (MAPE)

Baselines
§ SIR, PatchSIR
§ AR, ARMA
§ RNN, GRU, LSTM
§ DCRNN, CNNRNN-Res, LSTNet
§ STGCN, Cola-GNN, STAN

Wang, et al., AAAI 2022



Forecasting Performance
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Globe State County
Wang, et al., AAAI 2022



Questions

q Can we apply recurrent neural networks to capture long-
term patterns in epidemic forecasting?

q How to leverage graph neural networks to learn spatial and 
temporal signals for spatiotemporal epidemic forecasting?

q How to leverage theory-based mechanistic models to 
provide epidemiological context for deep learning-based 
epidemic forecasting?

q How to improve the robustness of forecasting systems?
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Ensemble-based Epidemic Forecasting
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Our methods: 
Clustering-based Training
Bayesian Ensemble

Related publications: 
L. Wang, et al., “Examining Deep Learning Models with Multiple Data Sources for COVID-19 Forecasting”, IEEE BigData DSMH 2020.
Adiga, L. Wang, et al., “All Models Are Useful: Bayesian Ensembling for Robust High Resolution COVID-19 Forecasting”, SIGKDD 2021.
A. Adiga, et al., “Enhancing COVID-19 Ensemble Forecasting Model Performance Using Auxiliary Data Sources”, IEEE BigData 2022. Best paper.

q Challenge: lack of robustness in different methods for 
forecasting at high resolution

q Ensembling different methods for a robust performance 
along the pandemic 
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COVID-19 Forecasting Efforts

q Challenges in real-time forecasting of COVID-19 dynamics
q There is no sufficient historical data 
q Forecast at finer spatial resolution
q Higher noise due to lower population counts
q Lack of exogenous observables such as mobility or testing rates 

at equivalent resolution
q Greater level of connectivity across regions leading to 

interdependence
q Reporting errors, back-filled cases may lead to uncharacteristic 

spikes not necessarily reflecting the state of the pandemic



Multi-source Ensemble

q Clustering-based training
q Stack ensemble
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“All Models are Useful”- BMA Ensemble

COVID-19 Forecasting 
efforts

Adiga, et al., SIGKDD 2021

http://covid19-forecast.uvadcos.io/Dashboard:

• Plateau phase: Significant number of counties showing 0.9 < 𝑅!"" < 1.1
• Mostly dominated by purely data-driven methods

http://covid19-forecast.uvadcos.io/


“All Models are Useful”- BMA Ensemble
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Ranking of teams based on Mean WIS scores: the plot indicates the number of 
locations across all weeks a given model was the best.



Phase Informed BMA
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Adiga, et al., IEEE BigData 2022. Best paper.



Applications

q CDC FluSight
q Seasonal influenza forecasting challenge
q Since 2018

q CDC COVID ForecastHub
q COVID 19 forecasting challenge
q Since 2020

q Biocomplexity Forecast Dashboard
q UVA forecasting team weekly brief to VDH
q Since 2020

65



Major Takeaways

q Models in research 
q LSTM, GNN can be applied for epidemic forecasting
q Combining theory and deep learning models for explainable 

predictions
q Techniques in real applications

q MCDropout for probabilistic forecasting
q Clustering-based training for epidemics with sparse and noisy 

data
q Ensembling of multiple methods for improving the robustness of 

forecasting systems 
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Many Thanks
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Aniruddha Adiga
UVA

Bryan Lewis
UVA

Adam Sadilek
CEO of AIM | Google[x]

Srinivasan Venkatramanan
UVA

Jiangzhuo Chen
UVA (Advisor)

Madhav Marathe
UVA (Advisor)

Many more whose names are not listed here!



Thank You
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Welcome to any discussions!

Please feel free to contact me:
Lijing Wang, PhD

Lijing.wang@njit.edu

mailto:Lijing.wang@njit.edu

